高级搜索

共有 17 个搜索结果

页1 来自 第 2 页

  • Phasics波前传感器: PHASICS波前分析仪 原理 ?
    内容: “多距离干涉仪”创新技术的高分辨率波前分析仪,其应用在光学测量学中(光学特性和表面分析系统);也应用在激光测量学中(分析仪和相适应的光学环);同样应用在生物领域(成像相位)等 ...
  • 空间光调制器 : 空间光调制器常见问题FAQ:
    内容: 空间光调制器常见问题FAQ: 常见问题FAQ: 1    问:  Pluto对波长650纳米的激光校准,即上载一幅灰度值在0-255之间的图,施加的相位调制对应在0-2pi之间。 如果改用波长532纳米的激光,上载灰度值范围为多少时,可以达到0-2pi之间的相位调制。        答:  若改用532nm激光,相位调制范围比650nm会大些。一般来说,SLM相位调制范围在短波长上会增加。 2    问:  说明书中提到相位校准过程中要加入起偏器和检偏器,请问SLM使用中是否要还要加入起偏器和检偏器?        答:   正常使用中也需要加入起偏器和检偏器。并且,一般要求起偏器的偏振方向与SLM微显示板的长边方向一致,基本不影响入射偏振态,达到只改变相位的目的。 3    问:入射光束和SLM法线的夹角有何限制,最大夹角大约为多少?       答:入射角度一般控制在6度以内,对相应偏振光的影响较小。 4     问:  SLM调制时有时中心光斑仍比较强,导致衍射效果变差,请问何种原因?如何消除?     答:一般来说,衍射效果受填充因子和入射偏振态影响。使用中,应通过插入起偏器和检偏器来消除非相干光的影响。 5   问:Holoeye空间光调制器使用中应注意哪些问题?         答:   一、防静电措施,特别是安装液晶显示面板时,应带防静电手套,防静电手腕;二、液晶显示面板与控制器之间的连线,应避免频繁插拔;三、空间光调制器部件的连接,应在断电状态下进行;四、使用环境,应避免高温、高湿,并保证一定的洁净度。 6     问:  Holoeye空间光调制器能否用于脉冲光?     答:Holoeye空间光调制器可用于飞秒脉冲整形,具体损伤取决于脉冲能量,重复频率、光斑大小等(如:200mW平均功率,1kHz重频,94fs,测得损伤阈值可达0.25 TW/cm²)。一般连续光功率密度为2W/cm2,制冷状态下可承受更高功率。 7   问:Pluto系列的响应时间?         答:   VIS: ~25ms;NIR: ~30ms;TELCO:~ 40ms。 9     问:  SLM Pluto和HEO 1080P的区别?        答:   Pluto与1080P采用相同的液晶显示面板,但Pluto的控制器体积小,是厂家改进的型号。而HEO1080P多应用于多通道 10   问: LC-R2500等型号对微机系统有什么具体要求?        答:目前的PC配置一般都能满足要求,值得一提的是,显示器分辨率最好不小于SLM液晶显示面板的分辨率。另外,Pluto配有显卡,而LC-R2500系统不配显卡,需要单独购买,国内市场有售,显卡要求应具有两个接口,一般是选择VGA和DVI接口(DVI接口连接SLM控制器,VGA连接电脑显示器);Holoeye提供的显卡,接口类型可以根据客户电脑显示器要求选择。 11    问:Holoeye产品都提供哪些软件?基本功能?         答:驱动软件和应用软件。当然,也可以根据要求,提供相位标定的小软件。应用软件中,可直接调入计算好的全息图(如bmp文件),并提供典型的衍射光栅图样。 12    问: HOLOEYE公司的SLM是否提供后续的软件开发包?能否提供一个触发脉冲,用于其他设备的同步?是否支持外触发模式?         答:Holoeye空间光调制器提供Laview子程序以方便您后续的软件开发。实际上对SLM的控制,就是对您的显卡的控制,您也可以直接对显卡进行编程,就可以实现您所说的所谓"同步",因为液晶显示面板上的图样就是电脑显示器显示图象的复制,所不同的是,液晶显示面板上反映的是相位分布。 13    问:  有那些用户在使用Holoeye空间光调制器?         答:   我们的客户遍及世界很多国家和地区,Holoeye的空间光调制器在全世界有着广泛的应用,您可以找到很多用Holoeye的空间光调制器的应用论文。在国内知名用户有中科院物理所,长春光机所,中国科学技术大学,天津大学,浙江大学,浙江工业大学,华东师范大学,南开大学,北京工业大学,大连理工大学,北京理工大学,首都师范大学,华南师范大学,长春理工大学,南京天文台,上海天文台,上海大学,上海理工大学等等。一些项目不能公开敬请谅解 标签: 空间光调制器 ...
  • 光纤熔融拉锥机: 光纤熔融拉锥机的原理?
    内容: 光纤熔融拉锥机的原理?  答: 熔融拉锥的基本方法就是将两根光纤或以上)去除涂覆层的光纤以一定的方式靠拢,在高温加热下熔融,同时向两侧拉伸,最终在加热区形成双锥体结构的特殊波导器件。当两根光纤融合时,输入光信号从一根光纤进入两根光纤。利用火焰产生高温。将光纤两根或多根光纤熔在一起。使光可以从一根光纤耦入另一根光纤。实现分光原理,同时可以根据监控熔融过程实现自由的控制两根光纤的分光比值。如:1:99或50:50。现在还可以根据拉制的周期长度等来控制分波。制做波分复用器。 现在主要是使用氢氧焰的机子。(当然,也有人用氢焰或还有用激光的) ...
  • 激光观察镜和红外相机常见问答: 我该选用那一种激光观察镜?
    内容: 普通激光选用Abris-M系列光纤中传输,光纤输出,光纤阵列SM-3R,SM-3G使用方便体积较小,价格贵一点点 ...
  • 其他常见问答总结: 请问slope efficiency 如何计算或测试?optical to optical efficiency 又如何计算或测试?
    内容: 请问slope efficiency 如何计算或测试?optical to optical efficiency 又如何计算或测试? 斜率效率( Slope Efficiency) ,也称微分效率(Differential Efficiency) ,是衡量激光器输出特性的很普遍的一个物理量。一般对光泵激光器而言,以泵浦功率作为横坐标、激光器输出功率作为纵坐标画一条曲线,该曲线的斜率即为激光器的斜率效率。一般情况下,当泵浦输入高出阈值很多时,激光器输出功率和泵浦输入功率的关系曲线接近直线,所以激光器斜率效率是一个确定的值。激光器的斜率效率可以针对入射的泵浦功率来定义,也可以针对吸收的泵浦功率来定义。对前者,斜率效率中把泵浦吸收效率考虑在内了;若对后者,则是为了突出激光增益介质内在的、固有的效率。所以,当比较不同激光器的斜率效率时,要看针对什么泵浦功率而言,否则就缺乏可比性了。 光光转换效率,optical to optical conversion efficiency ...
  • 其他常见问答总结: THz技术及应用
    内容: THz技术及应用 为了方便广大客户进行THz理论和实验研究,上海瞬渺的工程师将一些主要的产品和技术进行了总结,在产品的选型和设计提供了些参考。   THz波段•          THz辐射通常指频率在0.1~10THz,波长30um~3mm的电磁波,属于远红外波段;•          不同物质在THz段具有不同的吸收和色散性质,很多凝聚态物质和生物大分子的振动和转动能级落在太赫兹波段;•          对塑料、陶瓷、硅片等具有很好的穿透性;•          对水分的吸收很敏感,可探测含有水分的物质;•          THz光子能量很低,穿过物质时不易发生电离,所以可进行无损检测;•          利用适当的小孔或针尖,可以达到较高的空间分辨率,获得微波成像难以得到的高分辨清晰图像;  THz波源•          利用飞秒激光照射半导体材料表面,利用载流子的加速运动效应,产生THz电磁脉冲;•          通过施加偏置电压,用激光脉冲激发光电导耦合天线产生THz波;•          利用差频过程获得THz波:1)双波长输出Ti:Al2O3激光器,在DAST中实现差频;2)工作在简并点附近的光学参量振荡器;•          利用双周期或Phase-reversed PPLN实现双信号光运转的光学参量振荡器。•          利用Slant-stripe-type PPLN差频产生THz波;•          非线形整流原理实现THz波产生,如2D-PPLN:  THz探测•          光电导取样 光电导取样是和光电导天线(PCA )发射器结合起来发展的技术,需要超快激光光源进行相关测量。 •          自由空间电光技术 自由空间电光取样利用的电光效应是低频电场(太赫兹脉冲)和激光束(光学脉冲)在探测晶体中的耦合。太赫兹的电场调制探测晶体的双折射,进而调制了通过探测晶体的探测光束的椭圆偏振度。测量探测光束被调制的椭偏度可以得到包括所施加的太赫兹电场的强度和相位等信息。   THz波谱•          THz时域光谱系统是一种相干测量技术,可同时获得THz脉冲的振幅和相位信息。通过对时间波形进行傅立叶变换,能直接得到样品的吸收系数和折射率等光学信息。   THz成像•          THz透射成像系统  THz量子级联激光器 •          2002年Nature报道,首个太赫兹量子级联激光器由意大利和英国的学者合作研制成功;•          中国科学院半导体研究所已申请太赫兹量子级联半导体激光器材料的生长方法;•          波导层结构设计是制备太赫兹(THz)量子级联激光器的关键问题之一。   国内外科研动态•          美国伦斯勒理工学院THz研究中心实现T射线层析成像和生化样品识别和成像;•          美国其他实验室开展非线形THz光谱分析,如THz波量子光学和量子计算;•          在德国,实现THz共振结构用于无标记DNA识别;•          日本实现了在强磁场下半导体产生THz射线;•          在国内,天津大学姚建铨利用PPLN获得THz波辐射;•          上海微系统所理论上研究THz和低维半导体的相互作用;•          西安理工超快研究中心,在对光电导开关机理的深入研究的基础上,研制出THz光电导偶极天线。  有关THz研究更多的产品和方案设计,请联系上海瞬渺的技术工程师。Tel: 86 21 34635258/59/61/62  Fax: 86 21 34635260   Email: saleschina@rayscience.com ...
  • 其他常见问答总结: 激光雷达技术简介
    内容: 激光雷达技术简介 常用于大气探测的脉冲激光雷达,具有与微波气象雷达相似的探测原理。发射激光在大气中传播遇到大气分子以及诸如烟、尘、云雾之类的气溶胶时,将发生弹性散射、非弹性散射和吸收等物理过程。其中后向散射部分被脉冲激光雷达作为回波信号而接收,它包括强度、频率、相位、偏振等因子,成为激光大气探测的有效信息。 1 激光雷达基本原理  发射机发射一束一定功率的激光束,经过大气传输辐射到目标面上,目标面反射回来的回波由接收机接收,再由信号处理提取回波中的有用信息。激光雷达系统性能分析的基本问题是:在一定的发射功率下,受环境因素、系统参数的影响,确定接收端的接收功率、信噪比。  2 激光雷达的应用   激光雷达除具有测距功能外,还具有目标指示、目标精确跟踪和测定风的功能。目前有激光测距指示器,激光测距跟踪器两类多功能激光雷达。激光雷达多被用于大气环境监测方面,通过分析激光的回波信号从而得到大气物理特征。激光波长位于光波段,典型值为1um左右,这与烟尘等大气气溶胶粒子的尺度相当,加上探测器的探测灵敏度较高,因而激光探测烟、尘等微粒具有很高的探测灵敏度。激光雷达所接收的大气回波信息,包含了大气散射光的光强、频率、相位和偏振等多种信息。利用其可探测多种大气物理要素,其优势是其它探测手段所不能比拟的。 标签: 激光雷达 ...
  • 其他常见问答总结: 飞秒激光应用?
    内容: 飞秒激光应用? 超短、超强和高聚焦能力是飞秒激光的3大特点。 飞秒激光脉宽可短至4 fs(1 fs=10-15 s)以内…,峰值 功率高达拍瓦量级(1 Pw=1015w)聚焦功率密度达到1020-1022 W/cm2。飞秒激光可以将其能量全部、快速、准确地集中在限定的作用区域,实现对玻璃、陶瓷、半导体、塑料、聚合物、树脂等材料的微纳尺寸加工,具有其它激光加工无法比拟的优势:①耗能低,无热熔区,"冷"加工;②可加工的材料广泛:从金属到非金属再到生物细胞组织,甚至是细胞内的线粒体;③高精度、高质量、高分辨率,加工区域可小于焦斑尺寸,突破衍射极限;④对环境没有特殊要求,无污染。飞秒激光微加工是当今世界激光、光电行业中极为引人注目的前沿研究方向。世界各国学者在飞秒激光与材料相互作用机理研究方面已取得重大的进展,开发出以钛宝石激光器为主的飞秒激光微加工系统,开展了飞秒激光微纳加工的工艺研究,促进了多学科的融合,推动着飞秒激光微纳加工技术向着低成本、高可靠性、多用途、产业化的方向发展。飞秒激光微加工技术将在超高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。本文旨在综述飞秒激光微加工技术国内外的研究状况,介绍飞秒激光微加工的重要应用,展望其今后的发展趋势。   1 飞秒激光微加工系统的发展现状        飞秒激光出现以来,啁啾脉冲放大、以钛宝石晶体为主的增益介质、克尔透镜锁模。和半导体可饱和吸收镜等技术促使着它从染料激光器发展到自启动克尔透镜锁模激光器,以及后来的二极管泵浦全固态飞秒激光器和飞秒光纤激光器。为满足科研和生产进一步发展的要求,国内外学者仍然致力于飞秒激光器研究,纷纷搭建起微加工系统。飞秒激光系统由振荡器、展宽器、放大器和压缩器4部分组成。表1是近年来国内外最具有代表性的飞秒激光器、微加工系统。从表l可以看出:①输出脉宽大约几百飞秒,真正短到几飞秒的甚少,因而平均功率较低,限制了它在商业中的应用,生产效率较低;②工作稳定性提高,寿命延长,如畅销全球的CPA-21××系列的种子光有20年的平均无故障时间;③实现MHz的重复频率输出;④可调谐波长范围变广,加工精度、光束质量较高;⑤利用它的超快特性,逐渐实现三维精细加工。但飞秒激光系统在小型化、可调可控性、实用性、全光纤等方面还有很大的发展空间。   飞秒激光加工微结构        基于能量高度集中、热影响区小、无飞溅无熔渣、不需特殊的气体环境、无后续工艺、双光子聚合加工精度可达0.7μm等优势,飞秒激光在诱导金属微结构加工应用方面和精细加工方面都取得了很大的进展。        (1)孔加工在1mm厚的不锈钢薄片上,飞秒激光进行了具有深孔边缘清晰、表面干净等特点的纳米级深孔加工;在金属薄膜上,钛宝石飞秒激光加工制备出了微纳米级阵列孔,孔径最小达2.5μm,孔直径在2.5~10μm间可调,最小间距可达10μm,很容易实现10-50μm间距调整。     2 光通信领域        光通信的高速率、大容量和宽带宽的发展方向,要求光电器件的高度集成化。而集成化的前提是光电器件的微型化。因此,光电器件的微型化是当前光通信领域研究的前沿和热点。近年来,相比传统的光电技术,飞秒激光微加工技术将成为新一代光电器件的制造技术。国内外学者在光波导的制备技术等诸多方面进行了有益的探索,取得了很大的进展。        (1)光波导的制备光波导易于和光纤通信系统耦合且损耗小,在频域中呈现出丰富的传输特性,成为光纤器件的研究热点。与离子注入法和热扩散型离子 交换法等目前常用的制作方法相比,飞秒激光制作波导在室温环境下进行,过程简单,波导结构在高温时仍 能保持良好的质量和稳定性。美国学者用飞秒激光 制备的增益光波导长1 cm,可产生3 dB/cm的信号增益。大阪大学的Watanabe W等用85 fs、重复 频率l kHz、单脉冲能量1.5 μJ的钛蓝宝石激光制作 的多模干涉波导阵列,实现了高阶模输出。目前, 利用计算机精密控制飞秒激光加工平台,可以在材 料内部的任意位置制得任意形状的二维、三维或单模光波导。         (2)光栅的制备光栅在光通讯、色散补偿、光纤 传感等领域中发挥着不可替代的作用。光产业的发展,对光栅提出了更高的要求:①不同几何形状排列, ...
  • 其他常见问答总结: 电光调制器基本原理?
    内容: 电光调制器基本原理? 性能的光纤通信系统要求对直流激光源发出的激光施行外调制。激光的外调制具有的优点是高速率、大消光比、大光功率和消除半导体激光器内调制产生的光频率跳变的“啁啾”现象。  电光调制是基于线性电光效应(普克尔效应)即光波导的折射率正比于外加电场变化的效应。电光效应导致的相位调制器中光波导折射率的线性变化,使通过该波导的光波有了相位移动,从而实现相位调制。单纯的相位调制不能调制光的强度。由包含两个相位调制器和两个Y分支波导构成的马赫-泽德(Mach-Zehnder)干涉仪型调制器能调制光的强度。  体块型的光调制器比集成光学调制器需要更高的调制电压,因此在光纤系统中都选用带有光纤的集成光学调制器。理论上,用任何具有高速电光效应响应、能透过所使用激光的材料都能制作高速电光调制器。现在适合用于光纤通信系统的调制器材料有铌酸锂(LiNbO3)、砷化镓(GaAs)和聚合物(Polymer)。砷化镓和聚合物调制器中的光波导为带脊波导,它们与单模光纤光连接的损耗比铌酸锂波导与单模光纤要大得多。聚合物调制器的长期稳定性尚不理想。因此当前实用光纤通信系统中都选用铌酸锂调制器。  铌酸锂条形光波导是用钛扩散或退火质子交换方法提高了X-切或Z-切Y-传铌酸锂晶片表面窄条内的折射率而制成的。在光纤通信用的1.3mm和1.55mm工作波长上,这种光波导能承受大于100毫瓦光功率的通过,而不会造成不可治愈的光损伤。  作为传输线的行波电极制作调制器比电极长度远小于微波波长的集总电极制作的调制器有宽得多得多的调制带宽。集总电极铌酸锂调制器的调制带宽与电极长度乘积约小于2.2GHz·cm,而实验验证行波电极铌酸锂调制器有大于200GHz·cm的调制带宽与电极长度乘积。OC-192/STM-64制式光纤通信系统优质光发射机中所用的10Gb/s铌酸锂强度调制器的3dB电带宽为8GHz或3dB光带宽为15GHz。而OC-768/STM-256制式密集波分复用(DWDM)光纤系统光发射机中的40Gb/s调制器的3dB电带宽应达到30GHz。  在电通信系统中,原始高速率数字信号电平的峰-峰值只有0.8V。因为数据率大于2.5Gb/s的铌酸锂调制器的半波电压(Vp)较高,故都需要用驱动器来推动调制器。驱动器不仅要有很宽的工作频带,并且要能提供足够大的微波输出功率。例如:对于10Gb/s、Vp=5.5V的调制器,需要驱动器具有75KHz 到8GHz的工作频带及20dBm(100mW)的1dB输出功率。制作高速率的驱动器是非常困难的,因此制作具有低Vp的调制器是很受欢迎的。  当然,也要求调制器有良好的其他性能,如低的光插入损耗、大的消光比、小的光反射损耗、弱的电反射损耗和合适的啁啾(chirp)参量。  高速电光调制器有很多用途。高速相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。  M-Z铌酸锂调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。  高速M-Z铌酸锂调制器除了用于上述的高数据率的数字光纤系统外,还可在光时分复用(OTDM)系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于高速光波元件分析仪,测量微弱的微波电场等。 更多信息:http://www.rayscience.com/catalog_389_2.html ...
  • 其他常见问答总结: 超快激光器应用范围不断扩大
    内容: 超快激光器应用范围不断扩大 超短脉冲激光器已经在一些需要极高精度的商业应用中发挥作用。IBM公司利用飞秒光器消除光刻掩模中大小仅为10nm的缺陷,以制作最先进的集成电路。在准分子激光原位角膜磨镶术(LASIK)中,IntraLase公司开发的飞秒激光系统,能够比传统刀片更为精确地切割角膜皮瓣。这些都是飞秒激光应用的先驱。新一代飞秒激光的应用包括:在硅中写三维波导、加工微流装置,以及在活体细胞内无需在细胞膜上刺孔就可以进行手术。     作用于材料的超快效应         用强脉冲照射材料能够激发非线性吸收过程,从而改变材料的形态或键结构——引起局部膨胀、收缩,或改变材料内部的折射率,以及烧蚀材料表面。中佛罗里达大学(University of Central Florida)的David Richardson称:“我们确实是利用材料科学研究材料表面。”理解这些结构变化,将有望开辟新的应用领域。         对于表面烧蚀而言,超短脉冲吸引人的地方是其更高的精度。脉宽大于35ps的脉冲,会将熔化的材料喷溅到烧蚀区周围,并且将周围区域加热以至产生损伤。飞秒脉冲能够将更高的峰值功率会聚到更小的区域,产生波长不敏感的非线性效应,从而对材料进行烧蚀,并且几乎对周围的区域不会产生热损伤——这对掩模修复等高精度加工至关重要。         超短脉冲在打孔方面的应用也颇具吸引力,因为它可以实现高厚径比的小孔。去年五月的国际激光器和光电子学会议(CLEO)上,德国 Friedrich Schiller大学的研究小组报道了光纤放大激光器输出的800fs脉冲,能够在脉冲重复率接近1MHz的情况下,在几微秒的时间内在1mm厚的不锈钢上打孔。高重复率能够确保残余的脉冲能量不会在脉冲间隙耗散到靶区以外,从而减小打孔所需的脉冲数。         用超短脉冲在透明固体中制作三维结构具有广阔前景。通过高数值孔径透镜对光束聚焦,能够使表面处的光强低于损伤阈值,但材料内部焦点处会聚的光强足以使材料结构发生变化。         如果使用数值孔径为0.65的透镜将40~150nJ的脉冲聚焦,可以产生阈值最低的非线性效应,它会使材料的折射率变大。尽管研究人员对该过程的细节还并不完全清楚,但通常认为,非线性吸收会将焦点处在短时间内加热到熔点以上,此后玻璃迅速固化为具有更高折射率的致密态。玻璃的两种特别性质对该效应起到贡献——玻璃的密度随温度升高而增加,并且如果固体快速冷却的话,它将维持热液体所具有的更高密度。令一系列脉冲入射到材料并同时移动焦点,可以写高折射率波导。Schaffer表示,重复率越高效果越好,因为熔化以及冷却动力学行为,能够消除脉冲间的相对变化,从而获得损耗更低、更为平滑的波导。         在相同的聚焦条件下,150~500nJ更高功率的入射脉冲,将导致交替的玻璃层内折射率发生双折射变化,从而获得纳米尺度光栅。脉冲会在电磁场的一个分量上消耗一个玻璃薄层,并且消耗的玻璃会转移到相同分量的相邻位置,在该过程中产生平面纳米裂纹,排列方向取决于脉冲的偏振方向。加拿大国家研究委员会的研究人员通过实验表明:利用偏振方向不同的光,能够擦除并重写纳米裂纹。该技术在全息数据存储方面具有应用价值。         峰值功率更高的脉冲将使玻璃蒸发,导致材料从焦点处向外蒸发、并留下过密层包围的空缺。空缺大小可以小于波长,并且一系列脉冲能够在玻璃表面下产生诸如螺旋形等杂图案。该效应可用于加工内部衍射透镜或菲涅尔波带片,它可以对通过玻璃的光束聚焦。密歇根大学超快光学中心的Alan Hunt称,该效应还能用于在玻璃内制造微流通道。微流通道的直径能够小到20nm,但更大的通道更容易观察。Hunt 使用常规的光刻方法在玻璃表面刻蚀平面通道,但采用飞秒脉冲制造三维结构。在加工过程中,他将玻璃浸没在液体中,以消除激光烧蚀通道产生的碎片。         飞秒激光脉冲还可用于精密的外科手术,因为活体组织在较短距离内相对透明。目前该领域取得的最大成功是屈光手术中采用的准分子激光原位角膜磨镶术(LASIK)。相比于其他屈光性角膜切削术(PRK),LASIK的优点在于能够保留角膜的外层而不是将它烧蚀掉。但这需要首先用刀片切割角膜上皮,将其卷起后再用激光烧蚀角膜。这种切割过程带来的问题,是导致LASIK病人出现并发症的主要原因。         为了改进上皮切割,加州大学Irvine分校的Tibor Juhasz将飞秒激光脉冲聚焦到角膜表面下所需的深度处。首先在角膜下切割,然后向上切割以打开上皮。他建立了IntraLase公司,以对该技术进行商用推广。该套激光系统造价昂贵,并且需要病人支付额外的费用,但Shaffer称这套系统物有所值。他说:“采用该疗法的并发症发病率如此之低,以至于按照统计确定度恒量几乎测不出来。”         飞秒激光外科手术在生物医学研究方面的应用尤为引人注目。Schaffer称:“在生物方面,你做的很多事就是将一些东西破坏,然后看看究竟会发生什么。”飞秒脉冲能够到达组织内部并将目标结构破坏,如单个神经细胞或亚细胞结构。         加州大学San Diego分校的Nozomi Nishimura与David Kleinfeld显示了飞秒脉冲能够损伤小血管,以模拟轻度中风。目前神经学家认为,轻度中风是造成老年痴呆症的主要原因。重度中风的后果非常可怕,因为它将损坏大片组织。然而轻度中风能以不同的方式影响较小的区域,因此受影响的细胞仍能获得氧,但不能获得葡萄糖。飞秒脉冲使研究人员获得了研究轻度中风最早的生物模型,这是人们在开发对症疗法方面迈出的至关重要的一步。         在更为基础性的研究中,飞秒脉冲还能破坏单个亚细胞结构。Hunt显示了破坏具有定制生命周期的细胞内某一细胞器官,能够延长细胞的寿命。他还用飞秒脉冲改变细胞分裂所涉及的力学结构,以研究这些结构起到的作用。         前景展望         ...

热门搜索: